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Abstract 

We construct a supersymmetric SO (10) x U( 1)~ model of the Yukawa interactions at 

the grand unification scale from knowledge of a phenomenological set of mass matrices 

obtained by a previous bottom-up approach. The U(~)F family symmetry determines 

the textures for the Majorana and generic Dirac mass matrices, while the SO(10) 

symmetry relates each particular element of the up, down, neutrino and charged lepton 

Dirac matrices. The dominant second and third family contributions in the Dirac 

sector are renormalizable, while the remainin g contributions to the Dirac mass matrices 

are of higher order, restricted by the U(~)F family symmetry to a small set of tree 

diagrams, and mainly complex-symmetric. The tree diagrams for the Majorana mass 

matrix are all non-renormalizable and of progressively higher-order, leading to a nearly 
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geometrical structure. Pairs of 1,4S, 10 and 126 Higgs representations enter with those 

having large vacuum expectation values breaking the symmetry down to X7(3), x 

sum x U(l)y near the grand unification scale. In terms of 12 parameters expressed 

as the Yukawa couplings times vacuum expectation values for the Higgs representations 

employed, a realistic set of 15 quark and lepton masses (including those for the 3 heavy 

righthanded Majorana neutrinos)and 8 mixing parameters emerges for the neutrino 

scenario involving the non-adiabatic conversion of solar neutrinos and the depletion of 

atmospheric muon-neutrinos through oscillations into tau-neutrinos. 

PACS numbers: 12.15.Ff, 12.6OJv 
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I. INTRODUCTION 

The standard model (SM) of strong and electroweak interactions, while providing excel- 

lent agreement with experiment todate, is known to be woefully inadequate to explain the 

mass spectrum and mixings of the three families of quarks and leptons. One needs to go be- 

yond the standard model in order to relate the independent Yukawa couplings to each other. 

Of the various possibilities, supersymmetric grand unified theories and superstring theories 

seem to hold the most promise for successfully incorporating the Yukawa interactions in a 

more satisfactory fashion. In this paper we shall restrict our attention to supersymmetric 

SU(10) grand unification, which has been shown [l] to unify the gauge couplings successfully 

at a scale of ASGUT - 1016 GeV. 

It is a generally held opinion that knowl.+c o f the mass matrices in the weak flavor 

basis can provide insights into the dynamical mass-generating mechanism.[2] This follows 

from the fact that the mass eigenvalues are obtained by diagonalization of the mass matrices, 

wh.iIe the mixing matrices in the mass eigenbasis can be constructed from knowledge of &he 

diagonalizing matrices connecting the two bases. By starting from the correct mass matrices, 

one should then be able to deduce the observed quark and lepton masses and mixings after 

evolving the results down to the present “low energy” scales. 

Generally two procedures are at one’s disposal for the identification of the “correct” 

mass matrices. One can attempt to postulate a particular structure or “texture” for the 

mass matrices based on some well-defined and presumably simple theoretical concepts such 

as the unification group and/or the number of texture zeros present.[3] This procedure has 

been employed by most researchers in the past twenty years. Alternatively, one can make 

use of the known low energy mass and mixing data, supplemented by reasonable guesses 

for data which is not yet well determined, in order to extract mass matrices within some 

framework at the unification scale which yield the low energy data in question. Of special 
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interest are neutrino scenarios incorporating the Mikheyev - Smirnov - Wolfenstein (MSW) [4] 

nonadiabatic resonant conversion interpretation of the depletion of solar electron-neutrinos 

[5] and either th e o served depletion of atmospheric muon-neutrinos through oscillations [S] b 

or neutrinos of satisfactory mass to contribute to the hot component of mixed dark matter 

[7], for example. 

In a series of papers [8] the authors have demonstrated the latter “bottom-up” approach 

by making use of Sylvester’s theorem [9] to construct mass matrices from the low energy 

masses and mixing matrices evolved to the unification scale. In doing so, we have attempted 

to look for simplicity of the mass matrices in the SO( 10) framework while varying the quark 

and lepton weak bases. Such simplicity was found for the MSW solar and atmospheric 

neutrino depletions in the bases where the up quark and Dirac neutrino mass matrices are 

real and diagonal, while the down quark and charged lepton matrices are in general complex 

symmetric. The right-handed Majorana neutrino matrix exhibits a simple nearly geometrical 

texture. 

From the phenomenological mass matrices constructed, we have attempted to derive mass 

matrices of similar textures from some well-defined family symmetry. In particular, we find 

within an SO(10) x U(1) F s y mmetry framework that we can reproduce all the known and 

assumed-known low energy mass and mixing data for the quarks and leptons in terms of 

products of Yukawa couplings and Higgs vacuum expectation values (VEVs). The U( 1)~ 

symmetry controls the textures for the generic Dirac and Majorana mass matrices, while 

SO(10) relates particular elements of the up, down, Dirac neutrino and charged lepton mass 

matrices to each other. 

In this paper we shall present all the details for this model construction which were 

summarized in a short letter submitted elsewhere [lo]. Section II summarizes the bottom- 

up procedure and the phenomenological mass matrices obtained for the neutrino scenario 
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preferred. The U(1) F f amily symmetry is introduced and applied in the DimopouIos tree- 

diagram approach [ll] in Sect. III for the contributions to the mass matrices. In Sect. IV the 

diagramatic contributions to the mass matrix elements are explicitly given with quantitative 

results presented in Sect V. Our work is summarized in Sect. VI. 

II. PHENOMENOLOGICAL MATRICES from a BOTTOM-UP APPROACH 

We begin by presenting the low scale input and procedure by which we were able to 

construct a relatively simple SO(10) set of phenomenological mass matrices at the SUSY 

GUT scale as spelled out in detail in Ref. [8] Th e relevant framework is assumed to be that 

of SUSY SO(l0) grand unification at a scale of Asor~~ = 1.2 x 10” GeV with supersymmetry 

breaking occuring at a scale of 180 GeV, in order that we can use the analytical one-loop 

evolution formulas and results given by Naculich [12]. 

For the low scale quark data, we assumed the following set of quark masses and Cabbibo 

- Kobayashi - Maskawa (CKM) mixing matrix [13] 

m,(lGeV) = 5.1 MeV, 

me( me> = 1.27 GeV, 

mt(m,) = 150 GeV, 

md( 1GeV) = 8.9 MeV 

m,(lGeV) = 175 MeV 

nq,(m~) N 4.25 GeV 

(2.la) 

v&ciu = 

0.9753 0.2210 0.0031e-‘1660 

-0.2206 0.9744 0.043 (2.lb) 

0.011 -0.041 0.999 
-O.OOli 

The light quark masses were chosen to be the central values given by Gasser and Leutwyler 

[14], while the heavy physical top mass was set equal to 160 GeV prior to its discovery 

yielding a running mass of 150 GeV. We assumed a value of 0.043 for Vd, which is now 

thought to be closer to 0.040, and applied strict unitarity to determine Vd, &d and q,. 
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The greatest SO(10) simplicity was obtained for the neutrino scenario incorporating the 

observed depletion of solar neutrinos [5] through the nonadiabatic MSW [4] matter conversion 

of electron-neutrinos into muon-neutrinos in the interior of the sun and the depletion of 

atmospheric muon-neutrinos through oscillation into tau-neutrinos observed now by several 

deep mine collaborations [6]. Th e central values deduced for these mixing plane results are 

sm:2 - 5 x 10D6 eVa, sin’ 2&s N 0.008 
(24 

w3 - lx 10ml eV2, sin’ 2ea3 - 0.9 

We took for the lepton input 

mu. = 0.5 x 10q6 eV, 

mYr - - 0.224 x 10B2 eV, 

mu7 = 0.105 eV, 

me - - 0.511MeV 

m, = 105.3 MeV 

m, = 1.777 GeV 

(2.3~) 

and 

(2.36) 

0.9990 0.0447 0.0076e-“65” 

Kept -0.0563 0.8170 0.575 = 
0.026 -0.570 0.818 

-0.007i 1 
These masses and mixing matrix data were evolved to the SUSY GUT scale by using 

formulas given by Naculich [12] as spelled out in detail in Ref. 8. We could then reconstruct 

complex-symmetric mass matrices at the SUSY GUT scale by making use of Sylvester’s 

theorem [9] as illustrated by Kusenko [15] for the quark sector. The construction is not 

unique, for one is free to change the quark and lepton weak bases by letting two parameters, 

2s and XL, vary independently over their support regions, 0 5 z <_ 1. For zq (xc) = 0, the 

up quark (Dirac neutrino) mass matrix is diagonal; while for z9 (xl) = 1, the down quark 

(charged lepton) mass matrix is diagonal. One is also free to vary the signs of the mass 

eigenvalues. 

By varying the signs of the mass eigenvalues and the two parameters X~ and XL, we 

then searched for a simple SO(10) t s ructure for the mass matrices. The greatest simplicity 
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occurred with xq = 0 and xl = 0.93 corresponding to diagonal up quark and Dirac neutrino 

mass matrices and leading to 

with Mfi, ME and Mfi anomalously small and only the 13 and 31 elements complex. En- 

tries in the matrices stand for the Higgs representations contributing to those elements, 

which we elaborate upon in the next Section. We have assumed complete unification for the 

Yukawa couplings of the third families of quarks and leptons and that vacuum expectation 

values (VEVs) d evelop only for the symmetric representations 10 and 126. The 10’s con- 

tribute equally to (MU, MD) and (MN~i+*e, ME), while the 126’s weight (Mu, MD) and 

(MNDirre , ME) in the ratio of 1 : -3. The Majorana neutrino mass matrix MR, determined 

from the seesaw formula [16] with use of MN~i-e and the reconstructed light neutrino mass 

matrix, exhibits a nearly geometrical structure [17] given by 

MR- 

l 

F -@E m 

-m E -m ‘1 (2.4~) 

m --47E c J 

where E N $m with all 1 e ements relatively real [18]. It can not be purely geometrical, 

however, since the singular rank-l matrix can not be inverted as required by the seesaw 

formula, MN=tf 2 -MNDir-c( MR)-lMNL.. 

III. U(l)= FAMILY SYMMETRY and RESULTING TREE DIAGRAMS 

The challenge is now to introduce a family symmetry which will enable us to derive the 

mass matrix textures derived above phenomenologically from our bottom-up approach. For 
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this purpose, we propose to use a U(~)F family symmetry [19], where we leave open for the 

time being whether the symmetry is global or local in which case it can be gauged. Before 

proceeding with this, we review briefly the elements of the SO(10) symmetry group which 

play important roles in our model construction. 

In the SO(10) k: amework, each family of left-handed quarks, leptons, conjugate quarks 

and conjugate leptons belongs to a 16 dimensional representation. It is convenient to rep- 

resent a given flavor (and color) member of the ith family and its conjugate by the two 

components QiL = ($iL,($‘)iL). In th e corresponding three-family basis ordered as follows, 

\EL = {~~L,~~L,~~L,(~=)~L,(~=)zL,(~=)~L),~~ e contributions to the up or down quark, neu- 

trino or charged lepton, mass terms in the Yukawa Lagrangiau are then given by 

C = g;C-‘MSL + h.c. (3.la) 

where the 6 x 6 matrix can be written in terms of 3 x 3 submatrices 

with the individual contributions referring to 

ML : (+iL)*C-‘$jL 

MDirac : (+iL)TC-‘($C)jL = G$iL 

M&c : (+‘)iLTC-‘+jL = $&jL 

MR : ($c)~C-l(@‘)jL = $G(P)jL 

(3.lb) 

(3.lc) 

Here the diagonal block entries appear only for neutrinos with ML the left-handed Majorana 

neutrino mass matrix which we take to vanish, while MR is the right-handed Majorana 

neutrino mass matrix which receives large contributions near the SUSY GUT scale. 

By construction the 6 x 6 matrix M is complex symmetric, but the Dirac mass submatrix 

is not necessarily complex symmetric. We shall assume that the dominant contributions are 



-8- FERMILAB-Pub-95/236-T 

complex symmetric and that any departures from this form arise from small higher-order 

corrections. Recall that the SO(10) product rules read 

16 x 16 =10,+120,+126, (3.2a) 

16x18 =1+45+210 (3.2b) 

Hence we shall assume that only the symmetric Higgs representations 10 and 126 develop low 

scale VEVs, while the antisymmetric 120 does not. In terms of the SU(5) decompositions, 

we have 

10-+5+~, 126+%j+45+i$+10+5+1 (3.3a) 

The up-type quarks and Dirac neutrinos then can receive contributions from the neutral 

members of lO(5) and i%(5), the down-type quarks and charged leptons from those of 
-- 

10@) and 126(45), and the heavy right-handed Majorana neutrinos from those of 128(l). 

We shall later assume the Higgs representations 1 and 45 play a role in the higher-order 

corrections, where the 45(l) and 45(24) d evelop VEVs according to the decomposition 

45+24+1O+m+l (3.3b) 

Returning to the phenomenological mass matrices obtained in Section II, we use the 

textures given in (2.4a,b,c) as our starting point for the construction of an SO(l0) x U(~)F 

model of the Yukawa interactions. We find it useful to introduce a generic Dirac matrix, 

MD* WOC , to go along with the one Majorana matrix, MR. The u(l)F family symmetry will 

then determine the textures for MDiroc and MR, while the SO(10) symmetry will relate the 

corresponding matrix elements of the four Dirac matrices MU, MD, MN and ME to each 

other. 

Simplicity of the SO(10) t s ructure requires that just one Higgs 10 representation con- 

tributes to the (M Ditoc)as element (hereafter labeled D33). Since a 10 contributes equally to 
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the 33 elements of all four Dirac matrices, this implies that we assume complete unification 

of the Yukawa couplings at the unification scale: ti, = iita = tit/ tan&, where tan& is 

equal to the ratio of the up quark to the down quark VEVs in the 10, i.e., 

at = 910(+/2) SW%0 - 910uu 

??hf, = e, = g&/&) ’32s @lo = glovd (3.4a) 

tan A0 = %(+d(s) 

in terms of the SU(5) decomposition of SO(10) with u = 246 GeV. The same 10 can not 

contribute to D23 = D32, for the diagonal nature of Mu and MN requires the presence of 

another 10’ with 

tan PIO~ = v:(5')/vp9 = 0 (3.4b) 

Like:Nise we assume a pure 126 contribution to D22 with 

(3.4c) 

In other words, for simplicity we have taken the 2-3 sector of MDitac to be renormalizable 

with two 10’s and one 126 developing low scale VEVs. We illustrate the renormalizable 

3-point tree diagrams in Fig. la. 

We now assign U(1) F charges as follows to the three families (in order of appearance) 

and to the three Higgs representations introduced which generate low scale VEVs with the 

numerical values to be determined later: 

P 16;, 16,, 167, lo", 10 lb, 128" (3.5a) 

Conservation of U( 1) F charges then requires 2a + a ~0, a+p+b=Oand2P+c=Oas 

seen from the diagrams in Fig. la. 

We assume the rest of the MDi+oe elements arise from higher-order tree diagrams as first 

suggested by Dimopoulos [ll] twelve years ago. The point is that not only does SUSY 
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control the running of the Yukawa couplings between the SUSY GUT scale and the weak 

scale where it is assumed to be softly broken, but it also allows one to assume that only 

simple tree diagrammatic contributions to the mass matrices need be considered as a result 

of the non-renormalization theorem [20] applied to loop diagrams. While the low-scale VEVs 

introduced act only once in each diagram, other GUT scale VEVs arising from 1 and 45 

Higgs representations can connect superheavy GUT scale 16 fermions and their conjugate 

18 mirrors to each other and to the three light 16 families. The superheavy fermions and 

their mirrors pair off and get masses slightly higher than the SUSY GUT breaking scale, so 

their propagators in the higher-order tree diagrams lead to non-renormalizable contributions 

scaled by their masses. 

For each 45 Higgs representation, as noted earlier in terms of the SU(5) decomposition 

given in (3.3b), VEV s can develop in the orthogonal directions 

c 45x >-45(l), < 4Sy >- 45(24) (3.6a) 

or in any non-orthogonal directions. One such direction of interest corresponds to the hy- 

percharge direction for flipped [21] SU(5) x U(1) as clarified in Table I: 

<4s2>=; <45x > -f <45y > (3.6b) 

While the < 45x > VEV breaks SO(10) + SU(5), the < 452 > VEV breaks SO(10) -+ 

flipped SU(5). Alternatively, if the SO(10) + SU(5) breaking occurs earlier by some other 

VEV such as c 126’ > as required later for the Majorana sector, the combined action of 

c 45x > and < 452 > will result in the breaking of SU(5) -+ SU(3), x SU(B)L x U(l),. 

Since the D13 and D23 elements in (2.4a,b) h ave the same 10’ transformation property, 

this suggests that we introduce a 455 Higgs field and construct an explicitly complex- 

symmetric dimension-6 tree diagram as shown in Fig. lb, for which U(~)F charge conserva- 

tion requires Q +7 + b + 2e = 0. We shall later give the four Dirac mass matrix contributions 
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derived from D13 by use of Table I which confirms that D13 and D23 do have the same 10’ 

transformation property, i.e., the contributions to MU and MN vanish while those to lMD 

and ME are non-zero and equal. 

The D12 element, on the other hand, appears to arise from a linear combination of 10’ and 

new 128 VEV contributions for which (ME)1s << (MD)ls. Rather than introduce another 

new renormalizable diagram, we can make use of the fact that a 452 Higgs develops a VEV 

which vanishes for the charged lepton D12 diagram as seen from Table I. We then introduce a 

new 455 Higgs field and construct the complex-symmetric dimension-6 tree diagram shown 

in Fig. lb. Note that detailed study showed that to reduce the number of contributing 

diagrams the 10' Higgs line should leave the diagram, or equivalently, the 10” line should 

enter the diagram, so U(1) F charge conservation requires p + 7 - b + 2h = 0. 

The Dll element is dimension-8 or higher, and we leave it unspecified. The complex- 

symmetric leading-order Yukawa diagrams which we wish to generate are then neatly sum- 

marized by the ordering of the Higgs fields where alI external lines enter the diagrams: 

033: I63 -10-163 

023 : 162 -1O'-163 

032 : 163 -lo'-162 

022: lSrr -128-lel 

013 : 161 -45x -10/-45x -163 

031: 163 -45;~ -lo'-45x -161 

012: leI -4Sz -10"-4S2 -16, 

021: 161 -4S2 -10" -452 -161 

(3.7a) 

In order to obtain a different set of diagrams and hence a different texture for the Majo- 

rana matrix, we begin the M33 contribution with a dimension-6 diagram shown in Fig. lc 

by including a new 128’d Higgs which develops a VEV at the GUT scale in the SU(5) singlet 
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direction, along with a pair of 1s Higgs fields. Here 2a + d + 2g = 0. The nearly geometric 

structure [8] for MR can then be generated by appending more Higgs fields to each diagram. 

For M23 we introduce another l’j Higgs field to construct a diagram with one 128’d, one 45%, 

one l’f and two 1s fields with charge conservation demanding CY + /I + d + 2g + e + f = 0. 

The new 1’ field is needed in order to scale properly the Majorana matrix elements rela- 

tive to each other. The remaining leading-order diagrams of the complex-symmetric Majo- 

rana mass matrix follow by appending more 45%, 45; and l’f Higgs lines. The pattern is 

made clear from the charge conservation equations: 2p + d + 2g + 2e + 2f = 0 for M22, 

a+y+d+Zg+e+h+zf = 0 for M13, p + 7 + d + 2g + 2e + h + 3f = 0 for M12, and 

27 + d + 2g + 2e + 2h + 4f = 0 for Mll. 

In summary, the following Higgs representations have been introduced in addition to 

those in (3.5a): 

imd, 45;, 45$, 10, llf (3.5b) 

all of which generate massive VEVs near the GUT scale. In order to obtain CP-violation 

in the quark and lepton mixing matrices, we allow the VEVs for 45x, 452, 1 and 1’ to be 

complex, but the VEVs associated with the 10, 10’ ,126 and 126’ representations can be 

taken to be real without loss of generality as seen from our bottom-up results. Clearly, many 

permutations of the Higgs fields are possible in the higher-order diagrams. 

At this point a computer search was carried out to generate U(~)F charge assignments 

leading to the fewest additional diagrams allowed by charge conservation. An especially 

interesting charge assignment stood out for which 

a=9, p=-1, 7=-8 
(3.8~) 

a = -18, b = -8, c = 2, d = -22, e = 3.5, f = 6.5, g = 2.0, h = 0.5 

One should note that since o +p + 7 = 0, the [SO( lo)]’ x U( 1)~ triangle anomaly vanishes, 

whereas the [Tut]’ anomaly does not. Simplicity then suggests that the U( 1)~ family sym- 
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metry group can be global with a familon being generated upon its breaking. Alternatively, 

the U( 1)~ group can be local and gauged if the [U( l)~]~ anomaly is canceled by the addition 

of several SCI(lO)-singlet f ermions with appropriate U( 1) h g c ar es, or perhaps better still, by 

the Green-Schwars mechanism [22] provided the model can be derived kom string theory. 

We intend to study this point at greater length elsewhere and do not commit ourselves here 

to either possibility. 

With the above charge assignments we can further greatly limit the number of permuta- 

tions and eliminate other unwanted diagrams by restricting the U(~)F charges appearing on 

the superheavy internal fermion lines. With the following minimum set of allowed charges 

for the left-handed superheavy fermions FL and their mirror partners Fi 

FL : -0.5, 1.0, 2.0, 4.0, 4.5, -4.5, -7.5, 11.0, 12.5 

F; : 0.5, -1.0, -2.0, -4.0, -4.5, 4.5, 7.5, -11.0, -12.5 
(3.8b) 

as determined by another computer program, we recover just the leading-order diagrams 

listed in (3.7a) for the generic Dirac mass matrix together with the following uniquely- 

ordered diagrams for the complex-symmetric Majorana mass matrix 

M33 : 163 -l-mr--1-163 

M23: 102-1-45x -l'-i2#-l-163 

M32: 163-1-128'-1'-45~-1-169 

M22 : 163 -l-45x-l'-~-l'-45x-l-16~ 

M13: 161-45x-l'-1-45~-l'-126'-1-163 

M31: 163-l-126'-l'-45~-l-l'-45x-161 

Ml2 : 161 -45x -l'-1-45z-l'-i3-l'-45x-l-16a 

M21: 16:, -1-45x -l'-128'-l'-45z -1-l'-45x -161 

Mll: 161 -45x -l'-l- 45z -+-m-l'- 45z -l-l'- 45x-l6I 

(3.7b) 

Several other higher-order diagrams are allowed by the U(~)F charges given in (3.8a,b) and 
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appear for Dll, D22, M23 and M32 with the Higgs fields ordered as follows: 

Dll: 161 -45x -l'-1-10'-1-l'-45x -161 

022 : 161 -45z -10" -1'. -16a, 161 -l’+ - lo'+ -45z -16, 

M23: 161 -45; -l'-1-45y-l'-126'-1-163 
(3.7c) 

M32 : 163 -1-I'%'-l'-452 -1-S-45: -161 

These corrections to M23 and M32 ensure that MR is rank 3 and nonsingular, so that the 

seesaw formula [16] can be applied. Up to this point the contributions are all complex- 

symmetric. 

Additional correction terms of higher order which need not be complex-symmetric can be 

generated for the Dirac and Majorana matrix elements, if one allows additional superheavy 

fermion pairs with new U(~)F charges. Such a subset which does not destroy the pattern 

constructed above, but helps to improve the numerical results for the lepton masses and 

mixings, consists of the following: 

FL : 1.5, -6.0, -6.5 
(3.8~) 

FE : -1.5, 6.0, 6.5 

The additional diagrams arising from this expanded cet of superheavy fermions are: 

Dll: 16, -1-126-1-l'-45x -161, 16, -45x -l'- l-126-l-lleI 

Dll: 161 -1-45; -1-1'-1-126-1-161, 

1% -l-i%i--1-l'--1-45;-l-16, 

Dll: 16, -1-45; -l-l'-1-lo'-1-l'-44bx -16,, 
161 -45x -l'-l-lo'-l-X-l-45; -1-l61 

D12: 16, -l---l- C-45; -16, 

D21: 161-45;, -l'-l-128-1-16r 

D12: 16, -1-126-45; -45x -l-l6z 

D21: 161 -1-45x -45; -126-l-lleI 

D12: 161 -1 - 45; --128- 45x -1 - lSl (3.7d) 
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D21: 

D13: 

D31: 

D13: 

D31: 

D13: 

D31: 

Mll: 

162 -1 - 45x -126 - 45; -1 - 161 

161 -l-im-45;-1”-1-163 

163 -1-1’+-45+2-128-1-161 

1% -1- 45; -126 - 1” - 1 - 163 

- 163 -1 - 1" - 126 - 45; -1- lel 

1% -1 - 45; -1 - 10’ - 45x -163 

163 -45x -10’ - 1 - 45;; -1 - 161 

1% -45x -1’ - 45; -45; -45x -1’ - 126’- 
1’ - 45x -45; -45’3 -I’- 45x -161 

We thus have obtained the complete set of diagrams we shall consider for the evaluation 

of the mass matrices. Any additional diagrams for a given MDi+ac or MR matrix element 

allowed by the U( 1) F f amily symmetry are of higher-order and will lead to noticc&ly smaller 

contributions to that element than those arising from all the diagrams listed above. 

IV. EVALUATION OF CONTRIBUTIONS to the MASS MATRICES 

We now turn to the evaluation of the contributions to each matrix element at the SUSY 

GUT scale. The renormalizable 3-point couplings times VEVs for the 10(S), lo($), lO’(B’), 
-- 

126(5), 126(45) and 126’(l) vertices contributing to M” and MN, MD and ME, MD and 

ME, M” and MN, MD and ME, and MR, respectively, are labeled 

!hO%, glO"d, glO& g126wut g126Wd, g126'w' (4.h) 

We shall assume the superheavy fermions all get massive at the same mass scale, so each 

1, l’, 45, or 45~ vertex factor can be resealed by the same propagator mass M according 

to 

x = srsxu4sJM, z 3 g4Ssu4SJM, s G gluI/M, s’ G gpuI’/M (4.lb) 
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where we have introduced a convenient short-hand notation. In order to accommodate CP 

violation, as noted earlier after (3.5b) we introduce the four phases 

As a result we are led to introduce 14 independent parameters in order to explain the 15 

quark and lepton masses and 8 quark and lepton mixing parameters. 

The contributions for each diagram then follow by moving along each fermion line and 

appending the above parameters together with the coupling coefficents spelled out in Table I. 

Alternatively, one can use the detailed computational procedure of Mohapatra and Sakita 

[23] which makes explicit use of the SU(5) decompositions of the SC(10) matrices and 

fields. We have used both procedures for a check in our calculations and both agree. In 

the expressions presented below, we have evaluated the Dirac (+L)~C-~($‘)L and Majorana 

($c)l;TC-l($c)~ matrix elements . 

Leading-Order Dirac Matrix Diagrams of (3.7a): 

D33: 

D23: 
D32: 

D22: 

D13: 
D31: 

163 -lo- 163 

Mg = ME = QIOV,, Mg = Mg = glOVd 

162 -lo'- 163 
163 -lo'- 162 

M,D,=M,D,=M,E,=M&=g;& 

162 -126- 162 (4.2a) 

(M% M:) = (1, -3)gmwu, (M& Mi?> = (1, -3)g126wd 

1% -45~ -lo'-45x -163 

163 -45x -1O'-45x -161 

Mz = ME = ME = ME = -33910,v~x2e2’9= 
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D12: 16, -45~ -10” - 452 -162 

D21: 162 -452 -lo’* - 452 -161 

Mg = M,q = -4g10,v;z2e2i+z, Mz=Mg=O 

Leading-Order Majorana Matrix Diagrams of (3.7b): 

M33: 

M23: 

M32: 

M22: 

M13: 
M31: 

M12: 
M21: 

Mll: 

163 -l-126'-l-163 

MG = g126tw’s2ezi~l 

162 -l-45x-l'-IS-l-163 
163 -l-126'-l'-45x-l-162 

M.$ = M,$ = 5g126,wt~~2~'ei(~~+~l+~11) 

162 -1 - 45x -1’ - 126’ - 1’ - 45~ -1 - 162 

Mfi = 25g126:w’(x~~‘)2e2i(~~+~l+~l~) 

161 -45x -1'0l-452 -I.'-TB'- 1- I.63 

163 -1-m -1'-45z -l-l'--4Sx -161 

Mfi = Mg = 30g12s,wfxzs2s'2ei(~~+~~+2~l+2~1~) 

161 -45~ -I.'-l-452 -1'-IS-l'-45~ -1-162 
162 -1-45x -l'---l'-45z -l- l/-445* -161 

Mfi = Mfi = 150g126,w'x2Zs29'3ei(2~~+~~+2~i+3~l:) 

(4.2b) 

Higher-Order Diagrams listed in (3.7~) from Minimal Set: 

Dll: 161 -45x -l'-1-10'-1-l'-45x -161 

M; = ME = -3g10,vh(Z~9’)2e2i(~a+~1+~1’) 
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D22: 163 -452 -lo'* - 1" - 162, 162 -1” - lo’* -45~ -162 

M$ = M$ = -3g10,v~ZS'ei(d'-~'r) (4.2~) 

M23: 162 -45: -l'- l-45z-l'-ml-l-163 
M32: 163 -1~126'~l'-45z-l-I.'-45; -162 

MS = Mi = 30g126,WfxZS2S'2ei(-~=+~=+2~1+2~l:) 

Higher-Order Diagrams of (3.7d) from the Expanded Set: 

Dll: 

Dll: 

Dll: 

D12: 

D21: 

D12: 

161 -1-126-1-l'-45x -161, 161-45~ -1'-1-~-1-161 

(ME, M$) = (2, -6)g12~wux~2~'ei(~~+2~l+~l~) 

(M,q, Mh> = (-2, 6) g126wdx~2~tei(~~+2~1+~i0 

161-l-45;-1-~-l-~-l-161, 
161 -l-126-l-l'-l-45; -1-16, 

(MS, ME) = (3, -9)g128w,Z54S’ei(-~~+4~l+~l~) 

W% ME> = C-3, 9) g126wd294Qtei(-d.+4~1+~lr) 

161 -1-45; -l-l'- l-lo'- l-l'-45x -161, 

1% -45x -I'- 1 -lo'- l- II-1 -45; -1-16, 

(ME, M,E,) = (-7, -3)glo,v~zts49’2ei(~a-~~+4~l+2~~~) 

16, -l-126-1-l'-45; -162 

(MS, M:> = (1, -15)g12ew,zs~s’e’(-~.+2~l+~1’) 

Mg = ME = -3glzswdzs2s’ei(-da+2~l +&I) 

162 -45; -l'-1-126-l-16, 

(MzLIl,, M$) = (1, 9)g126wWUx92Q’ei(-~a+2~l+~l’) 

(ME, Mz) = (1, 9)g12swd252s’ei(-~D+2~l~~~‘) 

1% -1-126-45; -45x -1- lS2 

(M$, M$) = (2, -9O)g12sw,xts2e'(~"-~~+2~1) 

ME = 12g12swdzts2ei(~a-~=+2~l~), M;=o 
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D21: 162 -1-45x -45; -126-l-l61 

(ME, ME) = (I, -27)g128w,xzs2ei(~a-~‘+2~l) 

(ME, Mz) = (1, -27)g12swdxzs2ei(6”-~=+2~l) 

D12: 161 -1-45; -iZij-45x -l-l62 

(M,U, 9 ME) = (1, 45)gl2sw,xls2ei(~--d.+2~1 I 

(M& Me) = (-3, 9)g12ewda:zs2ei(~'-d=+2~1) 

D21: 162 -1-45x -m-45; -l-l6I 

(MZU;, MC) = (2, S4)g12swU2292ei(~=-~.+2~l) 

ME = -4g12ewdXzs2ei(~g-9a+2~1 1, ME=0 

D13: 161 -1-m-45; -1'*-1-163 

(Mg, ME) = (2, -18)g128w,t92s'ei(-9=+'~'-~1') 

ME = -4g12swdZ92g’ei(-~.+2~i-~1’), ME=0 

D3l: 163 -I- 1" - -45; -126-l-llsl 

(ME, Mg) = (I, g)g~28w,Z92S’ei(-~.+2~l-~l’) 

(M& ME) = (1, 9)g128wdzs2Q’ei(-~‘+2~1-~1’) 

D13: 161 -1-45;-126-l"-l-163 

(M$, Mg) = (I, g)g126w,ZS2S’ei(-~~+2~l-~1’) 

(ME, M&) = (1, 9)g12~wd292S'ei(-ba'2~1-~l') 

D31: 163 -l-?-128-45; -l-l61 

(Mg, MC) = (2, -18)g12~w,t~2~‘ei(-~~+2~l-dl~) 

M34 = -4g12ewdzs2s’ei(-9~+2~l-~l’) 1 Mg=o 

(4.2d) 

D13: 161 -1-455 -l-10/-45x -163 

ME = Mfi = -3glo,v~xC"S2ei(~=-~=+2~l) 
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D31: 16s -45x -lo’- 1 - 45; -1 - l& 

M.E = -4910,v~zts2e’(~=-~~+2~l), Mi=O 

Mll: 16, -45x -1’ - 45; -45;: -45x -1’ - 126’- 
1’ - 45x -45’2 -45; -1’ - 45x -16, 

Ml: = ( 900)2glp~,~‘(~czs’)4e4~(~=-~~+~~~) 

An interesting observation which can be drawn from the Majorana contributions in (4.2b) 

is that the matrix in leading order has a geometrical texture as given in (2.4~) with 

provided 2 N z. In fact, this observation served as an important guide in our construction of 

the Majorana neutrino matrix and suggested the relative roles played by the 45x and 45~ 

Higgs fields. 

V. QUANTITATIVE RESULTS for the SO(10) x U(l)= MODEL 

Finally we attempt to select a set of values for the 14 input parameters of (4.la,b,c) 

which wiII accurately reproduce the input data in (Z.la,b) and (2.3a,b) used for our bottom- 

up approach. As noted earlier, the minimal set of superheavy fermions and their mirror 

partners found in (3.8b) yield unsatisfactory results: m, = m, = 0, m, = 0.006 MeV 

andm,,=m,= 0.089 eV. The problem can be traced to the zero or tiny values of Dll. 

By expanding the set of superheavy fermions to include those in (3.8c), on the other hand, 

excellent results can be found as shown below. 

One particularly good numerical choice for the parameters at the SUSY GUT scale is 

given by 
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910% = 120.3, 91O"d = 2.46, 9104 = 0.078 GeV 

9126Wu = 0.314, glff)wd = -0.037, gl26rw’ = 0.8 x 10ls GeV 

mixwix/M = 0.130, g~tisuab /M = 0.165, au1 lM = 0.56, g&/M = -0.026 

40 = 350, 4. = qsl = cpl, = -50 

(54 

which reduces the number of independent parameters from 14 to 12. In fact, the only 

large phase angle is that for &. As seen from (4.2a), this is in agreement with our earlier 

conclusion from the bottom-up phenomenological results [8] that essentially only the Dirac 

D13 and D31 matrix elements are complex. The mass matrices at the SUSY GUT scale are 

then numerically equal to 

Mu = l 

-0.0010 - 0.0001i 0.0053 + 0.0034i -0.0013 

0.0053 + 0.0034i 0.314 0 1 

(5.2~) 

-0.0013 0 120.3 

-0.0001 -0.0104 + 0.0004i -0.0029 - 0.0045i 

MD = i -0.0077 + 0.0018i -0.036 0.078 

(5.2b) 

-0.0033 - 0.0048i 0.078 2.460 I 

0.0030 + 0.0003i -0.079 - 0.051i 0.0038 

MN = l 0.048 + 0.031i 

(5.2~) 

0.0038 -0.942 0 1 0 120.3 

0.0004 -0.0020 - O.OOlOi -0.0023 - 0.0045i 

ME - - i 0.0060 + 0.0031i 0.112 0.078 

(5.2d) 

-0.0009 - 0.0037i 0.078 2.460 1 

i 

(-.069 + .64Oi) x lo9 (-.141 - .119i) x 1O’r (.108 + .019i) x 1013 

MR = (-.141 - .119i) x 10zl (.461 + .549i) x 1012 (-.393 - .155i) x lO”( 

(.108 + .019i) x 1013 (-.393 - .155i) x 10” (.247 - .044i) x 10” 1 

.2e) 

in units of GeV. By using the seesaw formula [16], we find for the light neutrino matrix at 
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the SUSY GUT scale 

M  N l tf N -M N( M R)-�M @  

i 

(.027 - .238i) ⌧ lOa (-.109 - .199i) ⌧ 10B2 (-.037 + .512i) x 10-s 

= (-.109 - .199i) x 10e2 (-.232 - .088i) x 10-l (.258 + .4353) x 10” 

(-.037 + .512i) x 10D2 (.258 + .4353) ⌧ 10-l --.OOl - .llZi 
(5.2f) 

in electron-Volts. Again we emphasize the Dirac mass matrix elements appear in the form 

$&CslM(+‘)jh, while the Majorana matrix elements refer to (+c)~C-lM($c)jL with &t 

and ($‘)jL each a member of one of the three families of 16’s. Identicai contributions also 

arise from the transposed Dirac matrices and the right-handed Majorana matrix. As such, 

the true Yukawa couplings GY are just half the values of the gy’s appearing in (4.la,b). 

The masses at the GUT scale can then be found by calculating the eigenvalues of the 

Hermitian product MM+ in each case, while the mixing matrices VCKM and fiiapt can be 

calculated with the projection operator technique of Jarlskog [24]. After evolving these 

quantities to the low scale, we find in the quark sector 

m,(lGeV) = 5.0 (5.1) MeV, md(lGev) = 7.9 (8.9) MeV 

m&h> = 1.27 (1.27) GeV, m,( 1GeV) = 169 (175) MeV 

m(m) = 150 (165) GeV, %(mb> = 4.09 (4.25) GeV 

(5.3a) 

where we have indicated the preferred values in parentheses. The mixing matrix is given by 

i 

0.972 0.235 0.0037e-i124’ 

&KM = 
-0.235 0.971 0.041 (5.3b) 
0.012 -0.039 0.999 
-0.003i -O.OOli 1 

Note that Vd = 0.041 and IV&/V&l = 0.090 with the CP-violating phase b = 124’, while 

md/mu = 1.59 and m,/md = 21.3, cf. [12, 131. These results should be compared with our 

central starting input values given in (Z.la,b). 
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In the lepton sector we obtain 

mu. = 0.10 (?) X 10m4 eV, me = 0.43 (0.511) MeV 

mVF = 0.29 (0.25) x 10” eV, m, = 103 (105.5) MeV (5.4a) 

mu- = 0.12 (0.10) eV, m7 = 1.777 (1.777) GeV 

and 

I 0.998 0.049 0.039e-i121" 
\ 

Kept = 
-0.036 0.875 0.483 

(5.4b) 
0.042 -0.482 0.875 
-0.037i -0.002i I 

which should be compared with the input values in (2.3a,b). The heavy Majorana neutrino 

masses are 

M,R= 0.63 x 10’ GeV, MR = I) 37 x 10” GeV a * , MF = 0.25 x 1016 GeV (5.4~) 

The neutrino masses and mixings pre in the correct ranges to explain the nonadiabatic solar 

neutrino depletion with small mixing [S] and the atmospheric neutrino depletion with large 

mixing [6]: 

bmL = 8.5 x 10B3 eV*, sin’ 2812 = 0.0062 

64 
(5.5) 

= 1.4 X lOma eV’, sin’ 2833 = 0.71 

For our analysis, the SUSY GUT scale at which the gauge and Yukawa couplings unify 

was chosen to be A = 1.2 x lOlo GeV. From (3.4a) and (52a,b,c,d) we find that 91s = 0.69. 

It is interesting to note that if we equate the SO(lO)-b rea n and lepton number-breaking ki g 

VEV, w’, with A, we find gls6, = 0.67 2 glo. Taking into account the remark following 

(5.2e), we note the true Yukawa couplings are Glo N Grss, N 0.33. If we further equate 

91 = 910 z grssl, and ur = A for the U(l)F-breaking VEV, we find M = 1.5 x 10” GeV for 

the masses of the superheavy fermions which condense with their mirrors. These values are 

aII very reasonable. 
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The 45x and 452 VEVs appear at nearly the same scale, 2.8 x 10” and 3.5 x 1015 GeV 

respectively, if one assumes the same Yukawa coupling as above. On the other hand, if these 

VEVs appear at the unification scale A the corresponding Yukawa couplings are smaller than 

those found above. In either case, a consequence of their non-orthogonal breakings is that 

SU(5) is broken down to SU(3), x SU(Z)& x U( 1)y at the scale in question. No further 

breaking is required until the electroweak scale and the SUSY-breaking scale are reached. 

VI. SUMMARY 

Our starting point for this research has been based on the results obtained from a bottom- 

up approach proposed previously by us to obtain mass matrices at the SUSY GUT scale 

based on a complete set of data inputted at the low scales. In particular we have used 

the known quark and charged lepton masses and CKM mixing matrix together with the 

neutrino masses and mixings based on particular neutrino scenarios. The masses and mixing 

matrices were evolved to the SUSY GUT scale where the mass matrices can be constructed 

by use of Sylvester’s theorem. By varying the bases and the signs of the mass eigenvalues, 

we looked for simple textures for the mass matrices such that each matrix element involved 

as few SO(10) Higgs representations as possible. The neutrino scenario examined which 

appeared to yield the simplest structure involved the MSW nonadiabatic depletion of the 

solar electron-neutrinos together with the observed depletion of atmospheric muon-neutrinos 

by oscillations into tau-neutrinos. 

In this paper we have constructed an SO(10) x U(1) F model of the Yukawa interactions 

which neatly reproduces the desired SO(10) textures for the quark and lepton mass matrices 

for this preferred neutrino scenario. The observed features include the following: 

(i) The Abelian U(~)F family symmetry group singles out a rather simple set of tree 

diagrams which determines the texture of the generic Dirac and Majorana mass matrices, 
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while the SO(10) group relates corresponding matrix elements of the up, down, neutrino 

and charged lepton Dirac matrices to each other. 

(ii) The dominant second and third family Yukawa interactions are renormaliaable and 

arise through couplings with Higgs in the 10, 10' and 128 representations of SO(10). The 

remaining Yukawa interactions are of higher order and require couplings of Higgs in the 

128’, 1, l', 45x and 452 representations which acquire VEVs near the SUSY GUT scale. 

(iii) The Higgs which acquire high scale VEVs break the SO( 10) x U( 1)~ symmetry down 

to the SU(3), x SU(2) L x U( 1)~ standard model symmetry in two stages through the SU(5) 

subgroup. 

(iv) Although this non-minimal supersymmetric model involves several Higgs represen- 

tations, the runnings of the Yukawa couplings from the GUT scale to the low-energy SUSY- 

breaking scale are controlled mainly by the contributions from the 10, as in the minimal 

supersymmetric standard model. 

(v) The complete set of low scale VEVs which contribute to the fermion masses are 
-- 

10(5), 10(s), lO’($‘), 128(5) and 126(45) in the SO(lO)(SU(S)) notation. These Higgs 

correspond to the minimum number required in SO(l0) models which lead to the successful 

Georgi - Jarlskog relations [3]. Most of these models, however, do not include neutrino mass 

matrices. 

(vi) In terms of 12 input parameters, 15 masses (including the heavy Majorana masses) 

and 8 mixing parameters emerge. The Yukawa couplings and the Higgs VEVs are numeri- 

cally feasible and successfully correlate all the quark and lepton masses and mixings in the 

scenario which incorporates the nonadiabatic solar neutrino and atmospheric neutrino de- 

pletion effects. 

(vii) The right-handed M ajorana neutrino matrix has a nearly geometrical texture lead- 

ing to heavy Majorana neutrino masses spread over seven orders of magnitude as given in 

(5.4~). In fact, it is the highly geometrical structure of the Majorana matrix which accounts 
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for the nearly maximal mixing of the v,, and u7, rather than sizable mixing in the Dirac 

sector [25]. 

With the model as presented, the U(1) F current is anomalous, since the [U(l),]” triangle 

anomaly does not vanish. It is possible to cancel this anomaly, however, by the addition 

of two SO(10) * gl t sm e neutral fermions, nL and (nC)~, both with U(~)F charges of -12. By 

introducing another Higgs singlet representation which develops a GUT scale VEV, one can 

arrange that one of the new neutrinos remains massless while the other becomes superheavy. 

Alternatively, it is possible to cancel such an anomaly through the Green-Schwarz mechanism 

[22] provided the model can be derived from string theory. 

Studies are underway to examine what effects small mixings of such a light sterile neu- 

trino with the three families of light neutrinos will have on the neutrino spectrum and will 

be reported elsewhere. Work is also underway to construct a superpotential for the model 

presented here. 
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Table I. Couplings of the 45 VEVs to states in the 16. 

Fig. 1. Tree-level diagrams for the (a) renormalizable and (b) leading-order nonrenormal- 

izable contributions to the generic Dirac mass matrix and for the (c) 33 element of the 

Majorana mass matrix. 
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